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Abstract

When one works with a system that utilizes inheritance hierarchies the following problem often
arises. A new object is introduced and it must be integrated into a hierarchy; under which classes
in the hierarchy should the new object be positioned? In this paper, I formalize this problem for
feature-based default inheritance hierarchies. Since it turns out to be NP-complete, I present an
approximation algorithm for it. I show that this algorithm is efficient and look at some of the
possible problematic situations for the algorithm. Although more analysis and experimentation are
needed, these preliminary results show that the algorithm warrants such efforts.
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1 Introduction

Recent computational linguistics research into natural language lexicons has gone beyond simply
listing idiosyncratic information about words. Many researchers are adding some sort of structure
to their lexicons to replace the old practice of simply listing, in an entry for a word, all its properties.
This structure often takes the form of feature-based default inheritance hierarchies. For example,
such hierarchies are being utilized in lexicons for speech processing [Gibbon and Bleiching, 1991}, nat-
ural language understanding systems [Andry et al., 1992; Copestake ef al., 1991; Russell ef al., 1992;
Krieger and Nerbonne, 1991], lexicography [Kilgarriff, 1993], and theoretical linguistics [Flickinger
and Nerbonne, 1992; Gibbon, 1990; Reinhard, 1990; Cahill, 1993].

The move to structured lexicons was motivated, in part, by the fact that many current linguis-
tic theories (e.g., Head Phrase Structure Grammar [Pollard and Sag, 1987)) relegate much of the
complexity of natural language to the lexicon. Thus, linguistic generalizations about phonology,
morphology, and, increasingly, syntax and semantics are being made in the lexicon. Another reason
for the move to structured lexicons is that the use of machine readable dictionaries and corpora-
based linguistics has made it possible to construct large lexicons relatively easily (e.g., [Copestake
et al., 1991]). Large lexicons make issues like ease of maintenance and efficient use of memory more
important. Inheritance hierarchies are one way to address these issues.

Many of the linguistic generalizations that need to be made in the lexicon involve a cluster
of properties and often a hierarchy of these clusters. For example, the group of verbs often called
transitive verbs share the following properties: they require a subject and an object, the subject must
be a noun phrase, the subject must have nominative case, the object is usually a noun phrase, and
the object usually has accusative case. Feature-based default inheritance hierarchies use features to
represent the properties of a word and classes to group features. Features are most often some variant
of attribute-value pairs (e.g., [subj/case,accusative]! meaning that the subject’s case is accusative).
Classes may stand in an inheritance relationship: the lower class (subclass) receives the features of
the higher class (superclass). In a default hierarchy, the inheritance of any particular feature may be
blocked by a feature local to the subclass. In addition, many systems allow a class to have multiple
superclasses.

An example of a lexical hierarchy is presented in Figure 1. It encodes generalizations about
complementation and contro] features of verbs in its classes and inheritance links. INCOMPLETE
and EQUI are classes in the hierarchy. The pairs written directly below these classes are some of
the features that can be inherited from them. Features inherited by a class can in turn be inherited
from it (i.e., inheritance is recursive). The lines between classes represent inheritance links. For
example, all the features of INCOMPLETE are inherited by EQUI—unless overridden by features
in CONTROL or in EQUI.

When using such structured lexicons, a problem arises in deciding to which classes a word belongs.
This is an instance of the more general problem of placing a new class in the most appropriate place
in a classification scheme. In order to avoid overloading the term ‘classification’, I will call this ‘the
insertion problem.’ An example of the insertion problem is the task of placing the ditransitive form
of give into the hierarchy of Figure 1.

For example, suppose that this form of give (e.g., she gave him the dall) has the following features.

1The first element of this pair is an atomic symbol. Here and throughout this report, the ‘/’ has only mnemonic
relevance.
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COMPLEMENTATION

INCOMPLETE COMPLETE
mpleteN,:]] {complete,+]
sub/cat,
subj/case,nom)

{subj/complete,+]

CONTROL

[xcomp/cat,V]

xcomp/lex,-}

xcomp/complete,+]

TRANSITIVE 3-1
[dobj/cat,N] [iobj/cat,P]
dobj/case,acc) [iobj/case,acc)
dobj/complete,+] [iobj/complete,+)
EQUI SUBJ-RAISING OBJ-RAISING
[subj/nform,norm]  [subj/th-role,-) [obj/th-role,-)

Figure 1: Complementation and control features of verbs (adapted from [Flickinger, 1987]))

(1) [subj/cat,N]
[subj/case,nom)
[subj/complete,+)
[dobj/cat,N]
[dobj/case,acc)
[dobj/complete,+]
[iobj/cat,N]
[iobj/case,acc]
[iobj/complete,+]

A solution to this instance of the insertion problem would be to place give under the TRANSITIVE
and 3-1 classes. By doing so, all of the features listed above could be inherited except [iobj/cat,N].
This feature would have to be listed directly in the entry for give so that the incorrect default
inheritance of [iobj/cat,P] from the 3-1 class would be blocked. Thus, only three pieces of information
need to be listed in the entry for the ditransitive verb give: it inherits from TRANSITIVE, it inherits
from 3-1, and it has the feature [iobj/cat,N]. Notice that if we had inserted the entry under any other
set of classes, more information would have had to be listed in the entry. The main characteristic of
a good insertion is that it minimizes the amount of information that needs to be listed in the entry.

In lexicon research, the need for an automated insertion system arises in at least two situations.
First, when designing a structured lexicon, it is necessary to test the generalizations the structure
represents. One can do this by inserting large numbers of words and noting how well the words fall
into the classes of the structure. If there are a large number of words that have similar features
but do not fall into a single class then, perhaps, a class should be created for them. Or if a class
is seldom used by the words for which it was created, then perhaps it should be modified in some
way to better fit these words (this situation often arises when two or more classes overlap in the




generalizations they represent). Second, when using a finished hierarchy or a set of hierarchies
to build a large lexicon, one must transfer large numbers of lexical items from raw data files or
some other classification scheme to the hierarchies. For example, in the ELWIS project [Feldweg
and Storrer, 1992] a relational database is used to store application-independent information which
has been extracted from corpora and a machine readable dictionary. If the target application uses
a feature-based default hierarchy, then an insertion system is needed to move the data from the
relational database to the hierarchy. Figure 2 illustrates this situation. The first input, marked by
the dotted line, to a general insertion system is the specific hierarchy into which the items will be
inserted. After this hierarchy has been processed, the items themselves are taken from the database
and inserted into the inheritance hierarchy.

Application INSYST default
Independent inserter inheritance
Database system hierarchy

Figure 2: Transferring objects from a database to an inheritance hierarchy

In the following sections of this report, I will describe my approach to defining and solving the
insertion problem for feature-based default inheritance hierarchies. First, I give an informal char-
acterization of the problem and argue that this characterization captures the relevant aspects of
the problem. Second, I formalize this characterization and in appendix A show that the problem is
NP-complete. This result means that it is unlikely that a computationally tractable algorithm for
its solution will be found. Next, I describe an approximation algorithm for the problem and through
complexity analysis and discussion of preliminary experimentation, I argue that this algorithm pro-
duces reasonable results in an acceptable amount of time and space. This algorithm was modified
slightly so that it would produce insertions for hierarchies encoded in the DATR formalism. This
modified algorithm is part of a prototype of the INSYST system [Light et al., 1992] which inserts
lexical items taken from the ELWIS relational database [Feldweg and Storrer, 1992] into feature-
based default hierarchies built in the DATR formalism. Appendix B contains example runs of the
INSYST system.

Although this report focuses on the use of default inheritance hierarchies in natural language
lexicon research, the results described here are relevant to any system that uses default inheritance
hierarchies and requires automated insertion.

2 Informal Characterization of the Problem

A good insertion places an object under classes from which it can inherit most of its features. In
addition, it should use as few classes as possible to achieve this goal. These two requirements
are aspects of a basic principle of classification schemes: reduce redundancy. A corollary of this
principle is that a good insertion should minimize the amount of information stored in the entry
for the object being inserted and thereby maximize the use of the information contained in the
inheritance relationships. Three types of information are stored in an entry: its superclass(es), the
features that are not inherited from any superclass, and the features that are needed to block an
incorrect inheritance. Thus, an optimal set of superclasses for the object being inserted has the
smallest possible value for the following sum.




(2) number of superclasses + number of object features that are not in these superciasses + the
number of object features that must be listed to block incorrect inheritance

I will refer to this sum as the cost of the insertion or solution.

At first glance, one might think that one easy way to find an optimal solution is to start at the
roots of the hierarchies that make up a structured lexicon and simply walk down these hierarchies,
pruning off the branches below a class that contains a feature that the object does not have (since
all classes below this class will also have this feature). This approach will work for strict inheritance
hierarchies. Strict hierarchies do not allow default inheritance—all the subclasses below a given class
have to inherit all its features. The algorithm outlined above uses this characteristic to cut down the
search space for superclasses. However, default hierarchies do not have this characteristic: if a class
A inherits from a class B, the set of features associated with A might not be a superset of the set
associated with B. Thus, an insertion algorithm for default hierarchies cannot ignore A as a possible
superclass for an object simply because it has decided B is unsuitable; A might be an exception to B
in just the right ways (see Figure 3). Because of these considerations, for the purposes of insertion,

B
[a1,v1]
[a2,v2]
[a3,v3]
A
[a1,v5] features of the

object to be inserted
{fa1,v5][a2,v2}{a3,v3}}

Figure 3: Insertion in default hierarchies

I make the following claim.

(3) Each class in a default hierarchy should be viewed as the set of features that can be inherited
from this class.

(3) is a central claim of the approach to insertion taken in this report. (After I explain exactly what
is meant by (3), 1 will defend the claim.) It amounts to compiling out the inheritance relationships
80 that a hierarchy becomes a set of sets of features.? ‘Compiling out’ the inheritance relationships is
a process of pushing features down the inheritance links to the classes below so that all the features
of a class are ezplicitly listed in the data structure for the class. For example, compiling out the
hierarchy in Figure 1 would produce the set of sets listed in (4). The first set corresponds to the
COMPLEMENTATION class, the second to INCOMPLETE, the third to COMPLETE, the fourth
to TRANSITIVE, and the fifth to 3-1.

2 Additional information such as the relative height from which a feature is inherited can be computed during this
compilation process and attached to a feature via & weight. These weights could then be used when computing the
cost of a solution. Such weights would be one way to add back a small amount of hierarchical information without
making (3) vacuous.
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{[complete,-]
[subj/cat,N]
[subj/case,nom]
[subj/complete,+]}

{[complete,+]}

{[complete,-]
[subj/cat,N]
[subj/case,nom]
[subj/complete,+]
[dobj/cat,N]
[dobj/case,acc)
[dobj/complete,+]}

{[complete,-]
[subj/cat,N]
[subj/case,nom]
[subj/complete,+]
[iobj/cat,N]
[iobj/case,acc)
[iobj/complete,+]}

Now that we have a better idea of what is meant by (3), I will argue that (3) should be adopted
when dealing with the problem of insertion. Intuitively, it might seem that reducing a hierarchy to a
flat set of sets defeats the purpose of the hierarchy. This intuition exists because most hierarchies are
built so that lower classes represent sub-generalizations of the generalizations represented by higher
classes. These relations between generalizations are used by the hierarchy to reduce redundancy.
By flattening the hierarchy, one loses these relationships and thus redundancy increases, which is
usually bad. This intuition is correct when one considers storage and maintenance of information.
More succinctly, if one uses a set of sets instead of a hierarchy to represent information, the ability
to represent higher order generalizations is lost.

However, when one is concerned with insertion, the loss of higher order generalizations is irrel-
evant. It is irrelevant because if one accepts that a good insertion minimizes the space needed to
store the properties of the object being inserted, then, with respect to insertion, a class is simply a
chance to save space by storing one class name instead of a number of features. Thus, what features
can be inherited from a class is the only characteristic of a class relevant to insertion. In order to
compute which features can be inherited from any given class, one has to look at the entry for the
class and its superclasses and in turn, their superclasses etc. At each level, the features of the classes
above are passed down to the classes below. This is the processes of compiling out the hierarchy.

In response to this line of argumentation, one might counter that the hierarchy can be used
to reduce the search space of possible superclasses. As mentioned above, this is true for strict
hierarchies. However, as illustrated in Figare 3, this is not the case with default hierarchies. As
a result, the inheritance links between classes in a default hierarchy lose their usefulness after it
has been determined which features can be inherited from each class. Thus, when dealing with the
insertion problem in default hierarchies, one should think of the hierarchy as a set of sets, each of
which corresponds to a possible superclass of the object being inserted. The insertion problem, then,
amounts to picking an optimal subset of this set of sets; the definition of optimal remains the same.




3 Formal Definition

In this section, I will formalize the intuitive characterization of the previous section. The purpose
of this formalization is to provide a basis for the analysis of the complexity of the problem and
ultimately the development of an algorithm to produce solutions to the problem.

The first task is to give a formal characterization of the features we have been discussing infor-
mally in the previous section. Many different feature systems are used by linguists and computa-
tional linguists. Two feature systems in use today are typed feature structure {Pollard and Sag, 1987;
Carpenter, 1992] and the features used in DATR [Evans and Gazdar, 1990]. These systems grew out
of previous work in GPSG [Gazdar et al., 1985] and categories in general (Gazdar et al., 1988] which
in turn had roots in feature systems introduced in generative syntax [Chomsky, 1965] and generative
phonology [Chomsky and Halle, 1968]. Although I will work with a specific feature system, which I
will introduce shortly, the algorithms and proofs that I will present here, generalize to any feature
system with the following property: whether two features clash can be computed in time polynomial
in the size of the features.® Intuitively, two features clash if they are inconsistent. For example,
the feature [fly,+] clashes with the feature [fly,-]. Different feature systems implement this notion
in slightly different ways. The two feature systems just mentioned have this property. In fact, for
typed feature structures, an algorithm for unification exists that is just over linear in the size of the
features [Martelli and Montanari, 1982). As we will see in a moment, unification and checking for
clashes are closely related.

In the remainder of this paper, I will assume the following feature system. A feature is a pair
of atomic symbols (e.9. [a,v]). The first element is taken from a set of attributes (ATTRIBUTES)
and the second from a set of values (VALUES). For generality, I will assume that these sets are
infinite. The set VALUES includes a symbol ? which intuitively specifies that the corresponding
attribute is undefined or unknown for the object with the feature; more on this later. Two features
clash if their attributes are the same but their values are different; this definition also holds for the
value 7. Testing if two features clash can be done in constant time. I will use clash to denote a
binary function on sets of features that produces the subset of features from the first set that are in
conflict with a feature of the second (see Figure 4). I assume that the sets of features are internally
consistent, i.e., each set contains at most one feature per attribute. clash(C,D) can be computed
for the finite sets C and D in O(|C||D|) time by simply testing every pair formed from an element
from C and an element of D for a clash. (An average time complexity of O(|C]) can be achieved
by hashing the set D using attributes as keys.) If one views a typed feature structure as a set of
features, then the clash function amounts to listing all the features that do not unify.

With this feature system in hand, we can move on to the problem of insertion. Remember that
classes are the ‘nodes’ of the hierarchy, the superclasses of a class A are the classes from which A
inherits, and the subclasses of A are the classes that inherit from A. An object class is a leaf of the
hierarchy that represents a single object. In this section, any mention of an object class refers to
the object class being constructed for the object being inserted.

As mentioned above, I am concerned with feature-based default multiple inheritance hierarchies:
default in that all inheritance relationships are defeasihle and multiple in that classes can inherit from
more that one superclass. 1 assume that the hierarchies are unambiguous: for any given attribute,
a node only inherits one value for it. 1 will discuss the issue of ambiguity with respect to insertion
in section 5. I also assume, for expository reasons, that the feature sets inheritable from the classes
are unique: that a given set of features cannot be inherited from more than one class in a hierarchy.
The inheritance hierarchy in Figure 1 with the object node for give under TRANSITIVE and 3-1 is
an example of a feature-based default multiple inheritance hierarchy. The OBJ-RAISING class and

3The features I will use in this report are all of the same constant size. However, in some feature systems, features
may have complex attributes and values and thus may vary in size.




A = {[al,v1] B = {[al,v5]

[a2,v2] [a2,v2]

[a3,v3] (a3,v20]

[ad,v4]} [a7,v7)
(a9,v12]}

clash(A,B) = {[al,v]}
[a3,v3]}

Figure 4: An example of the clash function

the class for give both exemplify the multiple inheritance characteristic. The feature [dobj/cat,N}
in the give class exemplifies the defeasible nature of the inheritance relationship.4

Further, I am concerned with cautious insertion: only the known features of the object being
inserted should be inherited. An adventurous insertion would allow an object class to inherit extra
features from its superclasses. I view adventurous insertion as an extension of cautious insertion.® In
order to deal with the problem of inheriting extra features from superclasses, I will assume that the
symbol 7, when used as a value in a feature, means that the value is unknown for the object or that
the attribute is not appropriate for that object. I will call such features ?-features. Remember that
[a,?], like any other feature, clashes with features that have the same attribute but a different value.
Only object classes are allowed to contain ?-features. Figure 5 illustrates both forms of insertion
and the use of the ? value. In the case of adventurous insertion, Objectl would have the feature
{a3,v3] whereas with cautious insertion, its inheritance would be blocked by [a3,?].

In the previous section, I defined the insertion problem so that solutions could be incomplete:
not all the features of the object being inserted need be inherited. Of course, a solution pays a price
for forcing a feature to be listed in the object class. The second term of the sum in (2) specifies the
price paid. Because of the possible existence of clashes (the third term), an optimal solution may be
incomplete. Such incomplete insertions complicate the reduction needed to prove NP-completeness
and the statement of the insertion algorithm. To circumvent this difficulty, I will assume that all
hierarchies contain a singleton class for each non-?-feature of the object being inserted. (I wiil leave
these sets out of the figures of this report.) A singleton class is a class from which exactly one
feature can be inherited and which has no superclasses and no subclasses other than object classes.
Listing a singleton class as a superclass in an object class is equivalent to simply listing the feature
of the singleton class. This assumption allows me to require complete insertions while still being
able to represent the notion of incomplete insertion since any insertion that contains a singleton set
represents an incomplete insertion.

An instance of the insertion problem (IN) is a pair made up of a set F and a set N as defined
below. Note that only a finite number of features is needed to specify F and that there is a one-to-one
mapping between the sets in A" and the classes of the hierarchy.

4The blocking of a default inheritance can occur between any two classes in the hierarchy, one of the classes need
not be an object class.

5The algorithm developed in the following section would require only slight modification to produce adventurous
insertions.




Adventurous Cautious

insertion insertion
A A
al,v1] [a1,v1]
a2,v2 Y
0:3,v3 :3.2,\!:]
Objectl O})je;,(]:tl
a3,

the original features of Objectl
{[a1,v1] [a2,v2}}

Figure 5: Adventurous vs. cautious insertion

F contains the features of the object being inserted. F must be complete in the sense that for all
attributes in ATTRIBUTES there exists a feature in F that contains a value for that attribute.
However, F can only have a finite number of features that contain values other than 7. All
the other features are ?-features.

N is a set of sets of features. N must be finite and each of its elements must be finite. These sets
cannot contain ?-features.

If we return to our discussion of the hierarchy in Figure 1, we see that the set of features of
ditransitive give, listed in (1), is F for this hierarchy. The set of sets of features in (4) that resulted
from compiling out the hierarchy, plus singleton sets for the features of F,is V.

A solution is a set P C N. P represents the superclasses for the object whose features are F.
Every non-?-feature in F must be an element of either a set in P or clash(F,|JP).® The features in
this latter set have to be listed explicitly for the object in order to override incorrect inheritance. An
optimal solution minimizes the number of superclasses together with the number of clashes between
these superclasses and F (see (5)7).

(6) [Pl + Iclash(F,UP)|

Finally, the insertion problem, IN, is the problem of finding optimal solutions for instances as defined
above,

4 An approximation algorithm for IN

An algorithm for IN would take, as input, instances of IN and produce, as output, optimal solutions.
In appendix A, I show that the decision problem for IN, INg, is NP-complete. This result implies

‘UO where & is a set of sets 01,02, ...,0n is equal to ¢ U U ..U @n.

"Notice that the first two terms of (2) have been collapsed into the first term of (5). This is due to the presence
of singleton sets.




that it is highly unlikely that a computationally tractable algorithm for IN exists. Instead, the best
one should hope for is a computationally tractable algorithm that produces near optimal solutions.

Part of the proof in appendix A is a relatively straightforward reduction of the NP-complete set
covering (SC) decision problem to IN;.2 SC is defined as follows

“...the set-covering problem consists of a finite set F and a family A of subsets of F,
such that every element of F belongs to at least one subset of A...We say that a subset
S € N covers its elements. The problem is to find a minimum-size subset P C A whose
members cover all of F.” ([Cormen et al., 1990], p.974, I have substituted variable names
snalogous to the ones I have used for IN).

Figure 6 illustrates the problem and a solution. The following situation would be a real world
application of SC: a student wishes to schedule her four years of college such that she takes the
smallest number of classes but still satisfies all the requirements for a computer science degree.

o ( A

1,2,3,5,7

Figure 6: Set covering

IN can be viewed as extending SC in two ways. First, it substitutes features for integers. Fea-
tures introduce the possibility of clashes between elements. This makes the process of choosing P
more complex since one must take into account features clashed with as well as features covered.
Second, intuitively, IN loosens the restriction that all non-?-elements in F must be covered. How-
ever, in the formalization of the insertion problem, I finessed this problem by requiring A to contain

SSET COVERING is also know as MINIMUM COVER. It was originally proven to be NP-complete in [Karp,
1972].




singleton sets for all non-?-elements in . Thus, the formalization technically requires complete
coverage but retains the ability to represent incomplete covers since listing a singleton set in the
object class is equivalent to listing an uncovered feature.

A polynomial time approximation algorithm exists for SC and the solutions it produces are
guaranteed to be close to the optimal solution. More formally, the ratio of the size of the approximate
sclution produced by the algorithm to the optimal solution is bounded by the natural logarithm of
the sige of the set being covered [Lovasz, 1975; Johnson, 1974; Chvital, 1979):

(6) {Papproc!/IPoptimatl < In|F|+ 1.

In other words, as the size of the problem increases, the size of the approximation will grow only
logarithmically faster than the size of the optimal solution.

The approximation algorithm is greedy: at any given point, it picks the subset that can cover
the most features at that time and it never goes back on this choice. Greedy algorithms tend
to be fast but, since they cannot backtrack, can make local choices that prevent globally optimal
solutions. Because of the similarities between SC and IN, it seems likely that a greedy approximation
algorithm will produce good solutions for IN. The algorithm Greedy~IN (listed below) is efficient
and has produced good solutions in the small number of experiments I have performed so far (see
appendix B). However, I have not yet been able to prove a ratio bound for it.

Greedy-I1IN

1. Fiemp := {[a,v]lla,v]EFAv#£ 7}

2. e

3. Felash := 0

4. while Fiemp # 0

5. select S € N that maximizes |S N Fiemp| — |clash(F,S) — Ferasn|
6. Fremp := Ftemp — (S Uclash(F, S))

7. Fetash := Feiash UCIGS’I(}., S)

8. P := PU{S}

9. return

10. list P and F.,,, in the data structure for the object

The algorithm works as follows. It takes as input the set of features of the object being inserted,
F, and a set of sets of features, A, that represents the classes of the hierarchies. It produces as
output, a list of superclasses and a list of features that must be listed locally for the object. During
each iteration of its main loop (1ines 4-9), it picks the most suitable superclass (1ine 5). The
features from F that can be inherited from the new superclass & combined with those that must
be listed to block incorrect inheritance are subtracted from F. This loop is repeated until there
is no class in A from which more features can be inherited than must be listed to block incorrect
inheritance.® The algorithm halts and returns the superclasses along with features that must be
listed to block incorrect inheritance. To pick the most suitable superclass, a subroutine is called for
each class remaining in A that computes the difference between the number of features remaining
in F that can be inherited from the class and the number of new features that would be incorrectly
inherited.!?

°The difference being maximized in 1ine § will have a maximum value of 1 or greater because of the singleton sets
in A. The singleton sets that cover an element of Fiemp will not produce any clashes and thus will have a value of
1 for the difference. When these sets are exhausted, Fiemp must be empty and thus the loop will return. Remember
that these singleton sets represent features that have remained uncovered and must be listed individually.

10 Another possibility is to use the ratio of these two counts instead of the difference.
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At this point, it may be helpful to step through an example insertion. Consider the hierarchy
illustrated in Figure 7. It is a fragment of a hierarchy used to classify German noun compounds
with respect to their stress patterns [Gibbon and Bleiching, 1991). The compiled-out form of the
hierarchy, with singleton sets, is listed in (7) and the features of the object to be inserted, the noun
compound Birgermeister, are listed in (8).

NOUN
[syn/cat,noun]
[morph/cat,root}
(pros cat nil)

NOUN.COMPOUND

[morph/cat,compound]
[pros/cat left}

NOUN_.COMPOUND_MARKED
[pros/cat,right]

Figure 7: A hierarchy of features relevant to compound stress in German (adapted from [Gibbon
and Bleiching, 1991))

(7) {{[syn/cat,noun]
[morph/cat,root]
[pros/cat,nil]}

{[syn/cat,noun]
[morph/cat,compound]
[pros/cat left]}

{[syn/cat,noun]
[morph/cat,compound]
[pros/cat,right]}

{[determinans,Buerger]}

{[determinatum, Meister]}

{[syn/cat,noun]}

{[morph/cat,compound]}

{[pros/cat,right]}}

(8) {[determinans,Buerger]
[determinatum,Meister]
[syn/cat,noun)]
[morph/cat,compound]
[pros/cat,right]}

The input to Greedy-IN is the set of features being inserted, F, listed, in part!?, in (8) and the
set of sets of features, N, listed in (7). The first three steps of the algorithm initialize the variables

11Remember that F contains a potentially infinite number of ?-features. These features are not listed in (8).
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to be used in the main loop: Fiemp is set to the non-?-features of F (i.e. (8)), and P and Fej,,n'?
to nil.

After these variables have been initialized, the main loop begins and will continue until there
are no more features in Fyemp. In our example this will only take three iterations. During the first
iteration the nodes of the hierarchy get the following scores while computing line 5.

NOUN: -1
NOUN_.COMPOUND: 1
NOUN_.COMPOUND_MARKED: 3

The singleton sets all get scores of 1. NOUN receives its score of -1 because it covers one feature,
[syn/cat,noun], but clashes with two others: [morph/cat,compound] and [pros/cat,right]. Since
NOUN_COMPOUND_MARKED has the highest score, 1ine 5 sets S to it.

The next set of lines (6-8) compute the ramifications of this new superclass. In line 6,
[syn/cat,noun}, [morph/cat,compound], and [pros/cat,right] are removed from Fi.m,. Notice that
because of this subtraction, NOUN.COMPOUND_MARKED will receive the score 0 in future it-
erations and therefore will not be chosen again. Line 7 adds nothing to F.i4,n since the fea-
tures of NOUN_.COMPOUND_MARKED do not clash with any features in . Finally, in 1line 8,
NOUN_COMPOUND_MARKED is added to P.

Since Fyemp still contains {determinans,Buerger] and [determinatum,Meister] the loop continues.
In the second iteration, the following scores are produced in line §.

NOUN: 0
NOUN_.COMPOUND: 0

The singleton sets for the features still in Fyemp receive scores of 1 while the singletons for the
features already covered get scores of 0. Thus a singleton set is the winner. The choice between
them is arbitrary. Let us assume the singleton set for [determinans,Buerger) is chosen: this feature
is removed from Fiemp, Feiash Temains unchanged, and the singleton is added to P. In the next
iteration the same thing occurs for the singleton set corresponding to the final feature in Fiemp
[determinatum,Meister]. After this iteration Fy.mp is empty and the loop terminates.

The final line of the algorithm produces the output for the inserted object. In this case only the
first conjunct applies since no clashes occurred. The output is listed below.

{[syn/cat,noun]
[morph/cat,compound)
[pros/cat,right]}

{[determinans,Buerger}}

{[determinatum,Meister] }

The first set corresponds to the NOUN_.COMPOUND_MARKED class and the other two correspond
to singleton sets. Remember that these singleton sets represent uncovered features.

12 X 1asn is used to keep track of the features that the classes in P clash with. This set of features is necessary to
select the new superclass since the algorithm does not want to penalize a class for clashing with a feature that has
already been clashed with by a member of P.
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5 Analysis of the Algorithm

As mentioned above, Greedy-IN is a greedy algorithm. At choice points, greedy algorithms make
a locally-optimal choice and never backtrack. As should be expected, Greedy-1IN is fast but pro-
duces sub-optimal solutions in some situations. In this section, I will first discuss how efficiently
Greedy-1IN produces solutions. Then I will discuss the quality of the approximate solutions pro-
duced. Greedy-IN rucs in time polynomial in the size of the encoding of the input pair (¥ ), more
specifically, O(min{|Fnon—2|, IN|}HFnon-2||NV|) where Fpon_2 represents the set of non-? features
in F. To see this, consider the while loop (1ines 4-9). It can have, at most, min{|Fpon~2|, IN|}
iterations. This is because, in the worst case, either all the features in F,,on_» will be covered one
by one or all the classes in A will have been used. Each iteration has a maximum duration of
O(|Fnon-2|IN]). This is because, in order to choose the winning node S in line 5, one has to
compare every feature in Fpon—7 to every class in N to see if N contains the feature or clashes with
it. (This comparison can be done in constant time since the features in a set in A can be stored
in an array where the attributes serve as indices into the array. An array can be used since each
set in A is finite and only has one feature per attribute.) Thus, the time complexity of the overall
algorithm is O(min{|Fnon-7|, IN1}HFnon-2/|N]). The space complexity is also polynomial in the
size of the input: O(maz{|Fnon—1|, \N||Smaz|}) where Smqz is the largest element of A”. To see this
notice that the algorithm must keep track of what has happened to a feature in F,,,-» and it must
have an array of size [Smaz| to store the features of each class in . This space could be reduced in
practice by using hash tables instead of arrays to store the features for a class in N.

As for the relationship between the cost of a solution ; sduced by Greedy-IN and the cost
of a corresponding optimal solution, at this point in time, I can offer neither a theoretical proof
of a logarithmic bound nor extensive experimental results showing good performance (however, a
prototype implementation has performed well in small pilot studies (see appendix B)).

Instead, I will discuss the basic situation that causes sub-optimal results to be produced by greedy
algorithms and two standard problems for default inheritance hierarchies from [Touretzky, 1986]:
redundant links and nixon diamonds. A system that utilizes default inheritance hierarchies must
address these problems since, if left unattended, they can produce inconsistencies and /or unexpected
behavior in the system. I will discuss these problems in the context of insertion.

A B C
[a1,v1] [a1,v1] [a3,v3}
[a2,v2} [a2,v2] [ad,v4]
[a3,v3] [a5,v5]) [a6,v86)
[a4,v4]
F = {[a1,v1] [a2,v2] [a3,v3] [a4,v4] [a5,v5] [a6,vE]}

Figure 8: Problematic IN instance for Greedy-1¥

An example of the basic sub-optimal solution producing situation is illustrated in Figure 8. The
problem here is that class A is seductive. It covers a large number of features from ¥, more than B
or C. However, if A is chosen it is still necessary to pick B and C or the two appropriate singleton
sets to cover the features not covered by A: [ab,v5] and [a6,v6]. If an algorithm can withstand the
temptation of class A and instead go with B or C, this algorithm is rewarded by simply choosing the
other class (either B or C) to cover the rest of F. The solution set {B,C} is smaller than {A,B,C}
and since both cover all of ¥ and do not produce clashes, {B,C} is superior. However, Greedy-IN
falls for sets like A every time. Thus, Greedy-IN would produce {A,B,C}. It might seem like one
could tweak the selection criteria for the winning node (1ine 5) to produce an optimal solution and
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this is, in fact, the case for any given instance. However, in general, it is always possible to come
up with an instance for which these new criteria produce a sub-optimal result. This is due to the
fact that the central characteristic of the algorithm stays the same: decisions are made with only
local information and no backtracking is performed. Note that such problematic instances do not
seem to cause Greedy-IN to produce wildly incorrect solutions, simply slightly sub-optimal ones. In
addition, it remains to be seen how often actual hierarchies contain such situations.

A
[a1,v1] (a2,v2] [a3,v3]
[a4,v4] [a5.v5] [a6,v6]
[a7,v7)

B
{a5,v12] {a6,v13] [a7,v14]
{a8,v8] [a9,v9] [a10,v10]
[a11,v11] [a12,v12}

F = {a1,v1] [a2,v3] [a3,v3) [a4,v4] [a5,v5)
[a,v6) {a7,v7] [a8,v8] [a9,v9] [a10,v10]
[a11,v11) {a12,v12]}

Figure 9: Redundant link producing situation

Another situation that is problematic for Greedy-IN is illustrated in Figure 9. The compiled-out
set, N, (minus the singleton sets) for this hierarchy is listed in (9) where the first set corresponds
to A and second to B.

(8) N ={{[a1,v1] [a2,v2] [a3,v3]
[a4,v4] [a5,v5] [a6,v6]
[a7,v7]}
{[al,v1] [a2,v2] (a3,v3]
[a4,v4] [a5,v12] [26,v13]
[a7,v14] [a8,v8] [a9,v9]
[a10,v10] [a11,v11] [a12,v12]}}

During the first iteration of the main loop of Greedy-IN, A will be selected to be a superclass since
it will have a score of 7 whereas B will only have a score of 6. In the next round, however, B will be
chosen since it will then have a score of 2 which is higher than the scores obtained by the singleton
sets. At this point all the features of F will be covered. The new hierarchy, created by the insertion,
is illustrated in Figure 10. The link from the object class to A is known as a redundant link because
there is already a path to A through B. The first thing to notice is that the features that end up
on the object class are the correct ones; no inconsistencies exist. This is a result of the way clashes
are handled. The second thing to notice is that it is sub-optimal. The optimal insertion woui:’
list the same three features but only inherit from B. What has happened is that the choice of B
canceled out the benefits of A. Thus, A became a useless superclass when B was added. In fact,
the link to A could be removed without changing the features of the object class. A post-processing
algorithm could be designed to search for and eliminate redundant links. However, the need for
such a post-processing stage still has to be viewed as a defect of Greedy-IN. Contrary to claim (3),
that each class in a default hierarchy should be viewed as the set of features that can be inherited
from this class, it seems like Figure 9 illustrates a case where the inheritance links between classes
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Ob ject
[a5,v8)
[a8,ve)
[a7,v7)

Figure 10: The redundant hierarchy

are relevant for insertion. If one had such hierarchical information one could favor lower nodes in
a hierarchy over higher ones to eliminate the redundant link problem. However, it might also be
possible to use weights on features in the sets of A” to encode the relevant hierarchical structure
of the classes. These weights would be added during the compilation process. For example, the
weight of a feature would start at 1 in the class where it originates. It would then increase slightly
each time it is passed down to a lower class. Then, in 1ine &, instead of adding 1 for each feature
covered, the weight would be used. Thus, lower classes would be favored over higher ones. In any
case, redundant links are a problem for Greedy-IX as it currently stands.

The second standard problem for default inheritance hierarchies is illustrated in Figure 11. The

Republican Quaker
fmil/agr,+] [mil/agr,]

Nixon

Figure 11: Nixon diamond

problem is that it is unclear what features the object class should have. More specifically, should
the object class, Nixon, inherit the feature [mil/agr,+] from Republican or [mil/agr,-] from Quaker?
This type of situation is know as a Nixon diamond. The question here is whether Greedy-IN ever
produces such situations. The answer is no. Because clashes are handled by listing locally the correct
feature and because F is filled out by ?-features, it is not possible for a Nixon diamond to result from
a Greedy-IN insertion. Consider inserting the Nixon object class with an F such that [mil/agr,?] €
F into a hierarchy that contains the Republican and Quaker classes as in Figure 11. If either the
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Republican or Quaker class is chosen in 1ine 6, then a clash will result and {mil/agr,?] will be listed
in the object class for Nixon. If the other remaining class were picked as a superclass later, the local
listing of [mil/agr,?] would block any poesible inconsistency. If, on the other hand, the F for Nixon
contained [mil/agr,4] and the Republican and Quaker classes were chosen by the algorithm, then
at the point when Quaker was processed by Greedy-1N, [mil/agr,+] would be put on the clash list.
Thus, it would be listed locally in the Nixon object class. An analogous sequence of events would
occur if F contained [mil/agr,-]. Thus, Nixon diamonds are never created by Greedy-IN.

In this section, I started by showing that Greedy-IN is efficient. Next, we looked at the basic
situation that causes Greedy-IN to produce sub-optimal insertions. Although sub-optimal, these
insertions do not seem to be not wildly off the mark. Then, we looked at two standard problems
for default inheritance hierarchies: redundant links and Nixon diamonds. Redundant links are
produced by Greedy-1¥ and these insertions are sub-optimal. However, the insertions do not result
in inconsistencies and the redundant link can be removed without affecting the features of any class.
Nixon diamonds are never produced by Greedy~IN. Based on these results it seems that Greedy-I¥
warrants further investigation. Namely, further efforts should be made (a) to prove a logarithmic
ratio bound and (b) to perform large scale experimentation with actual objects and hierarchies.

6 Conclusion

The work reported on here is motivated in part by the use of default inheritance hierarchies by many
researchers to structure large natural language lexicons. An insertion system would be helpful when
developing the hierarchies of a lexicon system and when trying to use such hierarchies to structure
large amounts of data from outside sources. More generally, an insertion system is likely to be useful
for any inheritance system. The results presented here are relevant to any system that emuploys
default inheritance hierarchies and requires automated insertion.

I started this report by discussing informally the problem of deciding where an object belongs
in a feature-based default inheritance hierarchy. Later, I formalized this insertion problem as IN.
The crucial aspect of this formalization is that the hierarchy is viewed as a set of unrelated sets of
features. In other words, each class is viewed simply as a set of features that can be inherited from it;
the inheritance relations have been compiled out. Two facts combine to support this claim: i) a good
insertion minimizes the space needed to store the object and thus, a class is seen as an opportunity
to replace the listing of a number of features by a single superclass, ii) the structure of a default
hierarchy cannot be used to reduce the search space of potential superclasses. Because IN is NP-
complete, I designed an approximation algorithm for it: Greedy~IN. [ showed that this algorithm is
efficient and then looked at some of the possible problematic situations for the algorithm. Although
more analysis and experimentation are needed, these preliminary results seem to show that the
algorithm warrants such efforts. Thus, the main contributions of this work are a formalization of
the insertion problem, an NP-completeness proof, and a promising greedy algorithm.
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8 Appendix A: Proving IN; is NP-complete

An instance of the decision problem for IN, INy, is a triple: a set F, a set A, and an integer B. F
and N are as defined for IN in section 3. B represents a upper limit for the cost associated with
a solution. Strictly speaking INg is a language. An instance of INy is not necessarily in INy; it is
merely of the right form. An instance of INy is actually in INy if there exists a solution, as defined
for IN, that has a cost lower than B. The cost of a solution P is defined in (5) and repeated in (10).

(10) |P| + |clash(F,UP)|

For expository reasons, I will, from this point on, use F;y, N7n, and B;y instead of F, A, and B
when discussing IN,.

An instance of the decision problem for SC, SC4, is also a triple. It is made up of the following
elements,

Fsc is the set of integers.

Nsc is the set of subsets of Fsc that can be used to cover Fsc. For every element of Fsc, there
exists at least one element of Asc that contains it.

Bsc is an integer which is the upper limit on the size of a proposed solution.

A solution for an instance of SC; is a subset of Nsc that covers every element in Fsc. As with
INg4, SC; is a language. An instance of SCy is in SCy if a solution Psc exists that has a cost
smaller than Bsc. The cost for a set Pgsc is its cardinality: |Psc|.

To prove that IN; is NP-complete I have to show i) that a nondeterministic polynomial time
algorithm for IN exists, ii) that there is a polynomial time (in the size of the instance) transforma-
tion from SCy; to IN,. Let us call this transformation from instances of SC4 to instances of INy,
g (see Figure 12). If an instance z of SCy is in SC4 then g(z) must be in IN,4. If z is not in SCy
then g(z) must not be in IN,.

Instances of Instances of
sc ——— gx) | ——— IN

Figure 12: The transformation function ¢

To prove (i), consider the following nondeterministic algorithm for IN4: pick, at random, a set
Pin from Ny and compare its cost to By, if it is smailer say “yes” otherwise say “no”. This
algorithm is correct because if there is a solution with a cost lower than By then the computation
path that corresponds to this solution will produce the output “yes”. The algorithm is polynomial
in the size of the input because the operation of picking a solution is clearly polynomial in the size
of the input and computing the cost of this solution is also polynomial.!® Therefore, INg is in NP.

Now on to (ii). The transformation g contains a subroutine that maps each integer in Fsc to
a feature with that integer as both the attribute and value (e.g. 6 — [6,6]). Since none of these
features will have the same attribute but different values, no clashes exist. Using this subroutine, ¢

13The second term of the cost function , |clach(FCL,U‘PCL)|. may seem problematic because F;p is infinite.
However, since U‘Pc L is finite and only a finite number of features in Fjy are non-?-features, it is possible to
compute this term in polynomial time: run through each feature in U‘Pc 1, and compare it to the non-?-features of
Fin, if it clashes with a feature in F;x then list the feature from F;x, if no non-?-feature in ;5 has the same
attribute then list the corresponding ?-feature, otherwise go on to the next feature in U Pcr.

20




performs the following mappings from sets of integers to sets of features: Fsc to F;n and Nsc to
Nin. Finally, g sets Byx equal to Bsc.

¢ can be computed in polynomial time with respect to the input size since the most complicated
thing it does is map integers to pairs of integers. We now have to show that an z is in SCy iff g(z)
is in IN4. To see this, notice that for all z that are well-formed instances of SCy, the sets in g(z) do
not contain any features that clash with any other features in these sets. This means that the cost
of a solution Py for g(z) is |P;n| (i.c., the clash term drops out). This is the same cost function as
for SCy. In addition, for any z and g(z), Fsc is isomorphic to Frn and Nsc to Nin. Therefore,
for any solution Psc for z, a solution Py of the same size exists for g(z). Thus, a solution Psc
exists that is smaller than Bgc iff a Py exists that is smaller than Byy. Therefore, z is in SCy iff
9(z) is in IN4. Thus, IN; is NP-complete.
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9 Appendix B: Examples of INSYST in action

This appendix contains the input and output of actual runs of the INSYST program. The algorithm
is similar to Greedy-I¥ but not exactly the same.

Input theory (hierarchy):

I R RS R R R R R R R R R R R R R R R R R R R R R R R R R R R R R B

X File: latin.dtr

X Purpose Latin noun morphology (after Kennedy 1962)
% Amthor: Gerald Gazdar, March 24 1989

% Documentation: HELP edatr

% Related Files: 1ib datr

% Copyright (c) University of Sussex 1989. All rights reserved.
L3

I 2R R R R R R R R RS R R R R R R R R R R R R R AR
% I have modified this file slightly so that insyst can parse it. At
% this point in time INSYST cannot perfors inheritance closure for

% all the different combinations of inheritance rule types of DATR.

% (Rarc Light)

%

I R R R R R R R R R R R R AR R R R R R R R R R R R R AR R R R D]

DO:
:

D1:

<nom sing> ==
<nom plur> ==
<voc sing> ==
<voc plur> ==
<acc sing> ==
<acc plur> ==
<gen sing> ==
<gen plur> »=
<dat sing> ==
<dat plur> ==
<abl sing> ==
<abl plur> ==
<nva sing> ==
<gda plur> ==
<ava plurd> ==

<> == DO

<nva sing> ==
<acc sing> ==
<gda sing> ==
<adbl sing> ==

“<nva sing>"
“<nva plur>"
“<nom sing>"
“<nom plur>"
“<nva sing>"
“<nva plur>*
ll<“. .in‘,ll
"<‘d‘ pl“r)"
"<gda sing>"
“<gda plur>"
"‘“. '158>"
"<‘d. Pl“r>"
(“<root>")

(“<root>" iis)

“<gen sing>".

("<root>" a)

("<root>" am)
(“<root>" ae)
("<root>” aa)

<acc plur> == ("<root>" aas)
<gen plur> == (“<root>" aarum).

Dium: <> == D%
<gen plur> == ("<root>" um).

Diabus: <> == D1
<gda plur> == ("<root>" sabus).

b2: <> == DO
<acc siag> == (“<root>" um)
<gda sing> == ("<root>" oo)
<gen sing> == (“<root>" ii)
<gen plur> == (“<root>" oorum).

D2ocos: <> == D2
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D2us:

D2n:

D3us:

D3is:

D3ium:

<acc plur> ==

<> s= Dloos
<nom sing> ==
<voc sing> ==

< == D2
<ava sing> ==
<nva plur> ==

<> == DO

<gen sing>
<gda sing>
<abl sing>
<ava plur>
<gen plur>
<gda plur>

<> == D3
<acc sing> ==

<> == D3em
<nva sing> ==

<> == D3em
<nva sing> ==

<> == D3
<nva sine> ==
<gen plur> ==

D3emium:<> == D3ium

<acc sing> ==

D3isium:<> == D3emium

D3im:

D3ee:

D3nie:

D3ni:

<nva sing> ==

<> == D3isium
<acc sing> ==
<abl sing> ==

<> == D3emium
<abl sing> ==

<> == D3
<nva plur> ==

<> == D3
<gen plur> ==
<nva plur> ==

<> == D3nie
<abl sing> ==

<> == DO

<gen sing> ==
<gda sing> ==
<gen plur> ==
<gda plur> ==

<> == D4
<ava sing> ==
<acc sing> ==

(“<root>" cos).

(“<root>" us)
D3:<abl sing>.

<acc sing>
Di:<nva sing>.

(“"<root>" is)
D2:<gen sing>
(“<root>" o)
("<root>" ees)
Dium

("<root>" ibus).

("“<root>" em).

D2us:<nom sing>.

<gen sing>.

D3:<nva plur>
(“<root>" ium).

D3em.

<gen sing>.

("<root>" im)
Po.

("<root>" ee).

D2n.

D3ium
("<root>" ia).

Do.

("<root>" uus)
(“<root>" uun)
("<zoot>" uum)
D3.

D3us
D2




<dat sing> == (“croetd>" uit).

Ma: < == D4
<uva sing> == <gda siang>

<uva plur> == (“<root>" ua).

Ds: <> == DO
<ava sing> == (“<root>" es)
<acc sing> == (“<root>" m)
<gda siag> == (“<root>" eit)
<abl sing> == D3
<ava plur> == <ava sing>
<gea plur> == (“<Croot>” erum)
<gda plur> == (“<root>" ebus).

Features of the item to be inserted:

Vis:
<nom plur> == (vir ees)
<nom sing> == (vis)
<voc plur> == (vir ees)
<voc sing> == (vis)
<acc plur> == (vir ees)
<dat sing> == (vir ii)
<dat plur> == (vir ibus)
<abl plur> == (vir idbus)
<gen sing > == (vir is)
<gda sing > == (vir ii)
<ava plur > == (vir ees)
<gda plur > == (vir ibus)
<gen plur > == (vir ium)
<root > == vir
<ava sing > == vis
<acc sing > == yim
<abl sing > == vii.

The example run:

Command: load latin.dtr
Command: insfile latin.itml
Inserting [Vis] :

DO has 1 points

D1 has -2 points
Dium has -2 points
Diadbus has -2 points
D2 has O points
D2oos has -2 points
D2us has -8 points
D2» has 1 points

D3 has 8 points

D3em has 8 points
D3us has 8 points
D3is has 9 points
D3iwm has 10 poiats
D3enium has 10 points
D3isiwm has 11 poiats
D3im has 11 points
D3ee has 10 points
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D3n has 6 points
D3nie has 8 points
D3ni has 8 poiats
D4 has 2 points

D4m has O points
D4n has 3 points

DS has O points
#8888 The winner is:

D3isium:
uncompiled pair list for D3isium:
<> == D3emium: <>
<nva sing > == D3isium:<gen sing>

compiled pair list:

<nom sing > == vis

<nom plur > == vir ees

<voc sing > == vis

<voc plur > == vir ees

<acc plur > == vir ges

<dat sing > == vir ii

<dat plur > == vir idbus

<abl plur > == vir idbus

<gen sing > == vir is

<gda sing > == vir ii

<abl sing > == vir o

<nva plur > == vir qes

<gda plur > == vir ibus

<gen plur > == vir jum

<acc sing > == vir em

<nva sing nom sing > == vis
<nva sing nom plur > == vir ees
<nva sing voc sing > == vis
<ava sing voc plur > == vir ees
<nva sing acc plur > == vir ees
<nva sing dat sing > == vir ii
<nva sing dat plur > == vir ibus
<nva sing abl plur > == vir ibus
<nva sing gen sing > == vir is
<nva sing gda sing > == vir ii
<nva sing abl sing > == vir e
<nva sing nva plur > == vir ees
<nva sing gda plur > == vir ibus
<nva sing gen plur > == yir ium
<nva sing acc sing > == vir em

DO has -3 points

D1 has -3 points
Dium has -3 points
Diabus has -3 points
D2 has -3 points
D2oos has -3 points
D2us has -3 points
D2n has -2 points
D3 has -3 points
D3em has -3 points
D3us has -3 points
D3is has -2 points
D3ium has -3 points
D3emjum has -3 points
D3isium has O points
D3im has -2 points
D3ee¢ has -3 points
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B3 bas -3 points
D3nie has -3 points
D3ai has ~3 points
D4 has -3 points
Dém has -3 points
D4a has -2 poiants
D5 has -3 points

Final output

Vis:
<> == D3igium: <>
<root > == wir
<nva siag > *= vis
<ace sing > == vim
<abl sing > == vii
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Input theory (hierarchy):

:lll!!!l!!!l!lllll!!!ll111111111111

X File: serbocro.dtr
X Purpose: noun inflection in Serbo Croat
% Author: Gerald Gaxzdar, Narch 24 1989

% Documentation: MNELP edatr
% Related Files: 1ib datr
Copyright (c) University of Sussex 1969. All rights reserved.

XXX X IEEENN N LA XYYX

it ignores relevant stress factors

IR R R R R R R R R R R R R R R R R R R AR R AR RN R R
1 have modified this file slightly so that insyst can parse it. At
this point in time INSYST cannot perform inheritance closure for

% all the different combinations of inheritance rule types of DATR.

% (Rarc Light)

3

I 2R R R R R R R R R R R R R R R R R R R R R R R R R R R AR ]

3
L3
]
% mot to be taken seriously as a linguistic analysis:
%
L3
L3
X

Pnoun: <nom sing> == "<root>"
<gen sing> == '<nom plur>"
<dat sing> == <pom plur>
<acc sing> == <pom sing>
<loc sing> == “<dat sing>"
<loc plur> == "<dat plur>"
<ins sing> == (“<root>" om)
<nom plur> == (“<root>" i)
<gen plur> == "“<gen sing>"
<dat plur> == (“<rootd>" ima)
<acc plur> == "<nom plur>"
<ins plur> s= "<loc plur>"
<gender> == feminine.

Fnoun: <> = Pnoun

<nom sing> == (“<root>" a)
<acc sing> == (“<root>" u)
<nom plur> == (“<root>" e)
<gen plur> == (“"<root>" a)
<dat plur> == (“<root>" ama).

Nnoun: <> == Pnoun

<gen sing> == (“"<root>" a)
<dat sing> == ("<root>" u)
<acc plur> == (“<root>" o)
<gender> == masculine.
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Poatures of the item to be inserted:

Keat:
<aom siag > == Rest
<gen sing > == (kost 1)
<dat sing > == (kost i)
<acc sing > == kost
<loc sing > == (kost i)
<ec plur > == (kost ima)
<uom plur > == (kost i)
<gen plur > == (kost 1)
<dat plur > == (kost ima)
<acc plar > == (kost i)
<ias plur > == (kost ima)
<gender > == feminine
<root > == Rkost
<ias sing > == koshcu
<meaning > == done.

The example run:

Command: load serbocro.dtr
Command: insfile serbocro.itai
Inserting (Kost] :

Pnoun has i1 points
Faoun has 1 points
Rnoun has 3 points
88888 The winner is:

Paoun:
uncompiled pair list for Pnoun:
<nom sing > == “<root>"

<gen sing > == "<nom plur>"
<dat sing > == Pnoun:<nom plur>
<acc sing > == Pnoun:<nom sing>
<loc sing > == "<dat sing>"
<loc plur > == "<dat plur>"
<ins sing > == ("<root>" om)
<nom plur > == (“<root>" i)
<gen plur > == “}<gen sing>"
<dat plur > == (“<root>" ima)
<acc plur > == "<nom plur>"

<ins plur > == "<Cloc plurd"
<gender > == feminine

compiled pair list:

<nom siag > == kost
<gen sing > == kost i
<dat sing > == kost i
<acc sing > == kost
<loc sing > == kost i
<lec plur > == kost ima
<ins sing > == kost om
<aom plur > == kost i
<gen plur > == kost i
<dat plur > == kost ima
<acc plur > == kost i
<ins plur > s= kost ima
<gender > == feminine
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Paoua has O points
Faoun has -1 poiats
Nmoun has -1 points

Final eutput

Kost:
<> == Puown:<>
<root > == kost
<ins sing > == koshcu
<meaning > == bone
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